
 A tool for syntax-based
intra-language text alignment

Tariq Yousef, Chiara Palladino
University of Leipzig

Berlin Digital Classicist Seminars,
November 29, 2016

What is text alignment?

● Text alignment is the comparison of two or more parallel texts
● It tries to define correspondences/similarities and divergences/variants
● One of the most important tasks in Natural Language Processing: it can be

performed automatically through algorithmic and dynamic programming
methods

Intra-Language alignment: alignment of
texts in the same language

Cross-language alignment: alignment of
texts in different languages

● Cross-language
alignment is
difficult to perform
automatically

● It still needs
training data from
manual alignment

A Persian poem manually aligned with an English translation, from the project Open
Persian (http://www.dh.uni-leipzig.de/wo/open-philology-project/open-persian/)

http://www.dh.uni-leipzig.de/wo/open-philology-project/open-persian/

...So, there is also manual alignment

● The Perseids Project
and Alpheios Texts
provide tools for
manual alignment of
texts in different
languages
(http://www.perseids.
org/,
http://alpheios.net/)

Homer, Iliad XXI, aligned with the English translation by A.T. Murray

http://www.perseids.org/
http://www.perseids.org/
http://alpheios.net/
http://alpheios.net/

Pairwise alignment: alignment of two texts

We distinguish on the
number of text because
it determines
differences in the use of
the alignment algorithm

Two versions of Emily Dickinson’s Faith is a fine invention, aligned using
the Versioning Machine (http://v-machine.org/samples/faith.html)

http://v-machine.org/samples/faith.html

Multiple alignment: alignment of multiple
texts (i.e. more than two)

The number of
multiple texts is
virtually unlimited: in
an ideal world, you
can align as many
texts as you want
(but you should be
careful and avoid
“alignment
monsters”)

Six versions of the same poem by Emily Dickinson

Four texts
aligned with
iAligner

Alignment can be
visualized in
different ways

As a table

As a graph

Alignment graph using CollateX
(http://collatex.net/)

A
lignm

ent graph using TR
A

V
iz

(http://w
w

w
.traviz.vizcovery.org/)

http://collatex.net/
http://www.traviz.vizcovery.org/

As matching segments in aligned sentences

Alignment of three
sample texts on
CATView
(http://catview.uzi.uni-h
alle.de/overview.html)

http://catview.uzi.uni-halle.de/overview.html
http://catview.uzi.uni-halle.de/overview.html
http://catview.uzi.uni-halle.de/overview.html

As a dynamic visualization
(http://www.digitalvariants.org/variants/valerio-magrelli)

http://www.digitalvariants.org/variants/valerio-magrelli

As overlapping variants
(http://juxtacommons.org/)

As parallel texts with variants
highlighted in the corresponding
sections (http://juxtacommons.org/)

http://juxtacommons.org/
http://juxtacommons.org/

Why do we align
texts?

To highlight
correspondences

in different
versions of a text

(http://v-machine.org/samples/faith.html)

http://v-machine.org/samples/faith.html

To highlight
divergences

across various
versions of the

same text

(http://juxtacommons.org/)

http://juxtacommons.org/

To establish relations between witnesses of a text and see where they
overlap and diverge

Comparing texts as philological practice

Collatio

- Detection and transcription of
variants in witnesses

- It is made by close reading each
witness and comparing the texts
with each other

- Evaluation of the variants and of
the witnesses bearing them

….and yes, it is usually done manually.

Recensio

- To establish relationships
between witnesses and
which ones bear the “best
text”

- To establish an organic
scheme the transmission of
a text, often represented as
a genealogical tree of
witnesses (stemma)

Example of a stemma. Stemma for De nuptiis Philologiae et Mercurii by Martianus
Capella proposed by Danuta Shanzer (1986, p. 62-81).

Critical editions

- Usually display textual variants
in the form of apparatus
criticus

- The apparatus is a choice in
itself: it does not collect all the
variants found through
collation, but only those that
the editor had judged
significant for the
reconstruction of the text

- The apparatus can be very
complex to understand in large
textual traditions

Sallust’s Catiline in Axel Ahlberg’s 1919 Editio Major.

Critical text

Critical
apparatus

Now we can do some of
these things automatically

iAligner
http://i-alignment.com/

https://github.com/OpenGreekAndLatin/ILA_python

http://i-alignment.com/
http://i-alignment.com/
https://github.com/OpenGreekAndLatin/ILA_python
https://github.com/OpenGreekAndLatin/ILA_python

A tool for automatic syntax-based
intra-language alignment

● Automatic: it is performed with algorithmic methods to reduce human
intervention in the mechanical process of comparison.

● Syntax-based: in programming language, defines the order of the
characters and the order of the words in a sentence.

● Intra-language: works with texts in the same language.
● Pairwise or multiple: works with two texts or with an unlimited number of

multiple texts.

Algorithmic methods to produce alignment

The Needleman-Wunsch algorithm

- used in bioinformatics to align protein or nucleotide sequences.

- it uses Dynamic Programming to find the optimal alignment.

- divides a large problem into a series of smaller problems and uses the solutions to
the smaller problems to reconstruct a solution to the larger problem.

- uses a score function and similarity matrix to represent all possible combinations
of tokens and their resulting score.

The Needleman-Wunsch algorithm

- Aligning Bible Text John 1:1

NLT: In the beginning the Word already existed.

KJB: In the beginning was the Word

The used score function (Matching = 5, Mismatching = -5, In/Del = -2)

In the beginning the Word already existed .

0 -2→ -4→ -6→ -8→ -10→ -12→ -14→ -16→

In -2↓

the -4↓

beginning -6↓

was -8↓

the -10↓

Word -12↓

, -14↓

The used score function (Matching = 5, Mismatching = -5, In/Del = -2)

In the beginning the Word already existed .

0 -2→ -4→ -6→ -8→ -10→ -12→ -14→ -16→

In -2↓ 5 ↘ 3→ 1 → -1 → -3 → -5 → -7 → -9 →

the -4↓ 0↓

beginning -6↓ -2↓

was -8↓ -4↓

the -10↓ -8↓

Word -12↓ -10↓

, -14↓ -12↓

The used score function (Matching = 5, Mismatching = -5, In/Del = -2)

In the beginning the Word already existed .

0 -2→ -4→ -6→ -8→ -10→ -12→ -14→ -16→

In -2↓ 5 ↘ 3→ 1 → -1 → -3 → -5 → -7 → -9 →

the -4↓ 0↓ 10 ↘ 8 → 13 → 11 → 9 → 7 → -5 →

beginning -6↓ -2↓ 8 ↓

was -8↓ -4↓ 6 ↓

the -10↓ -8↓ 4 ↓

Word -12↓ -10↓ 2 ↓

, -14↓ -12↓ -0 ↓

The used score function (Matching = 5, Mismatching = -5, In/Del = -2)

In the beginning the Word already existed .

0 -2→ -4→ -6→ -8→ -10→ -12→ -14→ -16→

In -2↓ 5 ↘ 3→ 1 → -1 → -3 → -5 → -7 → -9 →

the -4↓ 0↓ 10 ↘ 8 → 13 → 11 → 9 → 7 → -5 →

beginning -6↓ -2↓ 8 ↓ 15 ↘ 13 → 11 → 9 → 7 → -5 →

was -8↓ -4↓ 6 ↓ 8 ↓

the -10↓ -8↓ 4 ↓ 5 ↓

Word -12↓ -10↓ 2 ↓ 0 ↓

, -14↓ -12↓ -0 ↓ -5 ↓

The used score function (Matching = 5, Mismatching = -5, In/Del = -2)

In the beginning the Word already existed .

0 -2→ -4→ -6→ -8→ -10→ -12→ -14→ -16→

In -2↓ 5 ↘ 3→ 1 → -1 → -3 → -5 → -7 → -9 →

the -4↓ 0↓ 10 ↘ 8 → 13 → 11 → 9 → 7 → -5 →

beginning -6↓ -2↓ 8 ↓ 15 ↘ 13 → 11 → 9 → 7 → -5 →

was -8↓ -4↓ 6 ↓ 8 ↓ 11↓ 9→ 7→ 5→ 3→

the -10↓ -8↓ 4 ↓ 5 ↓ 13↘ 11→ 9→ 7→ 5→

Word -12↓ -10↓ 2 ↓ 0 ↓ 11↓ 18↘ 16→ 14→ 12→

, -14↓ -12↓ -0 ↓ -5 ↓ 9↓ 16↓ 14→ 12→ 10→

The used score function (Matching = 5, Mismatching = -5, In/Del = -2)

In the beginning the Word already existed .

0 -2→ -4→ -6→ -8→ -10→ -12→ -14→ -16→

In -2↓ 5 ↘ 3→ 1 → -1 → -3 → -5 → -7 → -9 →

the -4↓ 0↓ 10 ↘ 8 → 13 → 11 → 9 → 7 → -5 →

beginning -6↓ -2↓ 8 ↓ 15 ↘ 13 → 11 → 9 → 7 → -5 →

was -8↓ -4↓ 6 ↓ 8 ↓ 11↓ 9→ 7→ 5→ 3→

the -10↓ -8↓ 4 ↓ 5 ↓ 13↘ 11→ 9→ 7→ 5→

Word -12↓ -10↓ 2 ↓ 0 ↓ 11↓ 18↘ 16→ 14→ 12→

, -14↓ -12↓ -0 ↓ -5 ↓ 9↓ 16↓ 14→ 12→ 10→

The used score function (Matching = 5, Mismatching = -5, In/Del = -2)

The Needleman-Wunsch algorithm

John 1:1

New Living
Translation In the beginning the Word already existed .

King James
Bible In the beginning was the Word ,

The modification to the algorithm

The goal is to optimize the algorithm
by reducing the search space

compares a token W at the position i
in S1 with a range of tokens [i-k, i+k]
in S2 with length of 2k+1.

The resulting search space is
reduced from (n * m) to ([2k +1]* m) ,
where k < n/2

The modification to the algorithm

k = 14, n = 157, m = 134

Search space = m*n = 21038

after modification

(2k+1)*m = 3886

Multiple Sequence Alignment (In progress)

● Progressive alignment

builds up a final MSA by combining pairwise alignments beginning with the
most similar pair and progressing to the most distantly related, it requires two
stages:

- creating the guide tree (clustering)
- adding the sequences sequentially to the

growing MSA according to the guide tree

Multiple Sequence Alignment (In progress)

● Iterative alignment

The aim is to reduce the problem of a multiple alignment to an iteration of
pairwise alignments.

How to align your texts with iAligner: copy
your text on the editor

The text has to be parsed in sentences first

...Or upload it

Currently supports .txt and .csv files

Refinement criteria

● Ignore non-alphabetical: ignores symbols, such as
punctuation and numbers, anything that is not an alphabetical
character

● Case sensitive: if activated, detects variation across words
according to the case

● Ignore diacritics: ignores any type of diacritical character
(including punctuation marks)

● Levenshtein distance: applies a revised version of the
Levenshtein algorithm and increases the tolerance threshold
on the alignment of similar words.

The Levenshtein distance

The Levenshtein distance between two words is the minimum number of
single-character edits (i.e. insertions, deletions or substitutions) required to
change one word into the other. e.g

lev(Hellanikos, Hellanicus) = 2

Mathematically, the Levenshtein distance between two strings { a,b} (of length
|a| and |b| respectively) is given by leva,b(|a| , |b|)

Modified Levenshtein Distance

Levenshtein distance is not very helpful in our case, because it is binary and
there is no tolerance with errors produced by OCR or Transcription.

the distance between letters is not binary, but it is on scale. The cost of insertion
or deletion depends on:

- Letter position

- Letter type (vowel or consonant)

lev(Hellanikos, Hellanicus) = 0.3

A Greek text with no refinement criteria

The same text with additional refinement criteria applied

Alignment output: a table-graph
iAligner displays all the nuances of variants according to a color-key:

- Completely aligned tokens (deep green)
- Tokens aligned by excluding case sensitivity or punctuation detection (light green)
- Gaps (yellow)
- Divergences (red)
- Tokens aligned by applying Levenshtein distance (blue-green)

What can you do
with iAligner?
Some case studies

Manuscript
alignment

Three manuscripts of Plato’s Crito
aligned (http://i-alignment.com/crito/)

http://i-alignment.com/crito/

OCR
output
alignment

Alignment of two OCR outputs from the Patrologia Graeca. The third column shows the overlapping
sections and offers the user the choice between two variants where the two texts diverge.

OCR
output
alignment Patrologia Latina: OCR output vs. correct version: www.i-alignment.com/pl/

http://www.i-alignment.com/pl/

Alignment of
editions

Three excerpted editions of Aeschylus’ Supplices aligned.
www.i-alignment.com/Aeschylus

http://i-alignment.com/Aeschylus/

Future work

Import and export options

Language dependent options for Latin, Greek, Arabic

Handling crossings and transpositions

Thanks for the attention!

